图书介绍

工程与环境引论 影印版【2025|PDF下载-Epub版本|mobi电子书|kindle百度云盘下载】

工程与环境引论 影印版
  • (美)EdwardS.Rubin,(美)CliffI.Davidson著 著
  • 出版社: 北京:清华大学出版社
  • ISBN:7302051364
  • 出版时间:2002
  • 标注页数:696页
  • 文件大小:32MB
  • 文件页数:714页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

工程与环境引论 影印版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

PART 1 Motivation and Framework1

Chapter1 Engineering and the Environment2

1.1 Introduction3

1.2 What Is“The Environment”?3

1.3 Framing Environmental Issues4

1.3.1 Good Change or Bad?5

1.3.2 Enter Public Policy6

1.4 The Role of Engineering7

1.5 Approaches to “Green”Engineering9

1.5.1 Sources of Environmental Impacts10

1.5.2 A Life Cycle Perspective11

1.5.3 Industrial Ecology and Sustainable Development12

1.6 Basic Engineering Principles13

1.6.1 Conservation of Mass13

1.6.2 Conservation of Energy15

1.6.3 The Use of Mathematical Models16

1.7 What Lies Ahead17

1.8 References17

1.9 Problems18

Chapter 2 Overview of Environmental Issues19

2.1 Introduction20

2.2 Environmental Concerns21

2.3 Atmospheric Emissions21

2.3.1 Criteria Air Pollutants22

2.3.3 Acid Deposition31

2.3.2 Air Toxics31

2.3.4 Stratospheric Ozone Depletion35

2.3.5 Greenhouse Gases37

2.4 Water Pollution40

2.4.1 Sources and Uses of Water41

2.4.2 Major Water Contaminants41

2.4.3 Drinking Water Quality46

2.4.4 Surface Water Quality47

2.4.5 Groundwater Quality50

2.5 Solid and Hazardous Wastes55

2.5.1 Hazardous Wastes55

2.5.2 Nonhazardous Wastes58

2.6 Radioactive Wastes62

2.6.1 High-Level Waste64

2.6.2 Transuranic Wastes66

2.6.3 Low-Level Waste66

2.6.4 Uranium Mill Tailings68

2.7 Depletion of Natural Resources68

2.8 Land Use and Ecological Impacts71

2.8.1 Biodiversity72

2.8.2 Loss of Habitat74

2.8.3 Marine Ecosystems74

2.8.4 Land Use Practices76

2.9 References77

2.10 Problems78

PART 2 Technology Design for the Environment81

Chapter 3 Automobiles and the Environment82

3.1 The Automobile and Society83

3.2 Environmental Impacts of the Automobile84

3.2.1 Urban Air Pollution86

3.2.2 Greenhouse Gas Emissions89

3.2.3 Materials Use and Solid Waste92

3.2.4 Other Environmental Impacts96

3.3 Fuel and Energy Requirements97

3.3.1 Power for Cruising98

3.3.2 Power for Hill Climbing100

3.3.3 Power for Acceleration101

3.3.4 Energy Efficiency102

3.3.5 Fuel Consumption105

3.4.1 Designing for Energy Efficiency109

3.4 Engineering Cleaner Cars109

3.4.2 Understanding Pollutant Formation111

3.4.3 Designing for Low Emissions115

3.4.4 Alternative Fuels116

3.4.5 Alternative Vehicles118

3.5 Conclusion121

3.6 References122

3.7 Problems123

Chapter 4 Batteries and the Environment128

4.1 Introduction129

4.1.1 Environmental Concerns130

4.1.2 Recent “Green”Efforts133

4.2.1 A Brief History135

4.2 Battery Basics135

4.2.2 How a Battery Works137

4.2.3 Theoretical Voltage140

4.2.4 Theoretical Capacity141

4.2.5 Actual Capacity143

4.3 Battery Features144

4.3.1 Voltage versus Time144

4.3.2 Effect of Operating Temperature148

4.3.3 Shelf Life149

4.3.4 Lifetime of Rechargeable Batteries150

4.3.5 Battery Rechargers152

4.4 Applications That Use Batteries153

4.4.1 Discharge Characteristics Based on Current Draw153

4.5 Conclusion155

4.4.2 Using Multiple Batteries155

4.6 References156

4.7 Problems157

Chapter 5 Electric Power Plants and the Environment161

5.1 The Role of Electric Power162

5.2 Overview of Environmental Impacts163

5.2.1 Environmental Impacts of Fossil Fuels164

5.2.2 Environmental Impacts of Nuclear Power175

5.2.3 Environmental Impacts of Renewable Energy178

5.3 Electric Power Fundamentals179

5.3.1 Current, Voltage,and Power180

5.3.2 Energy, Heat,and Work180

5.3.3 Electromechanical Generators181

5.3.4 Turbines and Energy Sources182

5.4 Performance of Fossil Fuel Power Plants183

5.4.1 Steam Electric Plants183

5.4.2 Gas Turbine Plants193

5.4.3 Combined-Cycle Plants194

5.5 Reducing Environmental Impacts196

5.5.1 Environmental Control Technology197

5.5.2 Improving Energy Efficiency207

5.6 Alternative Energy Sources and Technology210

5.6.1 Nuclear Energy212

5.6.2 Biomass and Refuse Energy213

5.6.3 Geothermal Energy214

5.6.4 Hydroelectric Energy215

5.6.5 Wind Energy217

5.6.6 Electrochemical Generators220

5.6.7 Photovoltaic Generators222

5.7 Comparing Environmental Impacts224

5.8 Looking Ahead225

5.8.1 Environmental Outlook226

5.8.2 Technology Outlook227

5.9 Conclusion228

5.10 References229

5.11 Problems230

Chapter 6 Refrigeration and the Environment235

6.1 Introduction236

6.2 Environmental Overview237

6.3 Alternative Refrigerants239

6.4 Fundamentals of Refrigeration242

6.4.1 Primary Energy Flows242

6.4.2 The Refrigeration Cycle245

6.4.3 Some Basic Questions247

6.4.4 Thermodynamic Relationships247

6.4.5 Refrigerant Properties250

6.5 Designing a CFC-Free Refrigerator252

6.5.1 Refrigerant Mass Flow253

6.5.2 Refrigerant Charge256

6.5.3 Refrigeration Cycle Efficiency257

6.5.4 Comparison of Alternative Refrigerants259

6.6.1 Compressor Energy Requirements262

6.6 Reducing Energy Consumption262

6.6.2 Auxiliary Energy Requirements265

6.6.3 Total Energy Consumption265

6.6.4 Effect of Thermal Insulation Design266

6.6.5 Energy Impact of CFC Substitutes270

6.7 Trends and Future Technology270

6.7.1 Energy Efficiency Standards271

6.7.2 The Fridge of the Future273

6.8 Conclusion275

6.9 References275

6.10 Problems276

Chapter 7 Environmental Life Cycle Assessments280

7.1 Introduction281

7.2.1 Making Decisions about Product Design282

7.2 Principles of Life Cycle Assessment282

7.2.2 Steps in a Life Cycle Assessment283

7.2.3 Scope of a Life Cycle Assessment285

7.3 Inventory Analysis286

7.3.1 Major Components of an Inventory Analysis286

7.3.2 Case Study of a Computer Housing287

7.3.3 Quantitative Analysis of the Computer Housing291

7.4 Impact Analysis300

7.4.1 Categories of Impacts300

7.4.2 Ranking Environmental Impacts301

7.4.3 Quantification of Impacts303

7.5.1 Improving Electrical Shielding of the Computer Housing306

7.5 Improvement Analysis306

7.5.2 Improving Waste Management of the Computer Housing309

7.6 Conclusion313

7.7 References314

7.8 Problems315

PART 3 Modeling Environmental Processes319

Chapter 8 Controlling Urban Smog320

8.1 Introduction to Urban Air Pollution321

8.1.1 London Smog321

8.1.2 Los Angeles Smog321

8.2 Achieving Air Quality Goals323

8.2.1 Units of Measurement323

8.2.3 Sources of Emissions324

8.2.2 Air Quality Standards324

8.2.4 The Role of Engineers325

8.3 Accumulation of Pollutants in an Urban Area327

8.3.1 Nonreacting Pollutants under Steady State Conditions328

8.3.2 Nonreacting Pollutants under Dynamic Conditions335

8.3.3 Reactive Pollutants under Dynamic Conditions339

8.4 Ozone in the Atmosphere340

8.4.1 Urban Ozone Levels341

8.4.2 Ozone Health Effects342

8.4.3 Bad Ozone versus Good Ozone343

8.5 Formation of Ozone in Urban Areas343

8.5.1 The Photochemical Cycle344

8.5.2 The Role of Hydrocarbons347

8.5.3 Photochemical Smog and Meteorology349

8.6 Controlling Ozone Formation350

8.6.1 Effect of VOC Concentration on Ozone Formation350

8.6.2 Effect of NOx Concentration on Ozone Formation351

8.6.3 Ozone Isopleth Diagrams352

8.6.4 Control Strategy Regimes356

8.6.5 Ozone Formation Potential of Hydrocarbons358

8.7 Conclusion363

8.8 References364

8.9 Problems364

Chapter 9 PCBs in the Aquatic Environment369

9.1 Introduction:What are PCBs?370

9.2 Toxicity of PCBs371

9.3.1 Fate and Concentration of PCBs372

9.3 PCBs in the Environment372

9.3.2 Environmental Standards for PCBs375

9.4 Chemistry of PCBs376

9.5 Release of PCBs from Sources379

9.5.1 Pathways of Release379

9.5.2 Example:PCBs in Boston Harbor379

9.6 Movement of PCBs in Receiving Waters381

9.6.1 Mixing and Dilution382

9.6.2 Settling of Particles386

9.7 Partitioning of PCBs in Receiving Water Systems390

9.7.1 Partitioning between River Water and Sediments390

9.7.2 Partitioning between River Water and Fish395

9.7.3 PCBs in the Hudson River396

9.8 Conclusion398

9.9 References399

9.10 Problems400

Chapter 10 Human Exposure to Toxic Metals402

10.1 Introduction403

10.2 A Brief History of Metallurgy403

10.3 Release of Metals to the Environment:Evidence of Adverse Effects406

10.4 Pathways of Human Exposure to Trace Metals407

10.4.1 Distribution of Trace Metals in the Environment407

10.4.2 Trace Metals in the Air409

10.4.3 Trace Metals in Water415

10.4.4 Trace Metals in Food415

10.4.6 Quantifying Total Human Exposure416

10.4.5 Dust and Soil416

10.5 Total Dose of Absorbed Metals417

10.6 Doses in a Population419

10.7 Response to a Dose426

10.8 Conclusion430

10.9 References430

10.10 Problems431

Chapter 11 CFCs and the Ozone Hole434

11.1 Introduction:The Problem of Ozone Depletion435

11.2 The Natural Ozone Layer436

11.2.1 The Structure of the Atmosphere436

11.2.2 Ultraviolet Radiation from the Sun437

11.2.3 Formation and Destruction of Ozone439

11.2.4 Measurement of Ozone Concentrations440

11.3 Chlorofluorocarbons(CFCs) and Halocarbons445

11.3.1 What Are CFCs?446

11.3.2 The Naming Convention for CFCs447

11.4 CFC Destruction of Stratospheric Ozone448

11.4.1 Mechanisms of Ozone Destruction by CFCs in the Midlatitudes449

11.4.2 Mechanisms of Ozone Destruction by CFCs in the Antarctic451

11.5 Quantifying Ozone Destruction by CFCs:The Mass Balance Model453

11.5.1 Calculating Amounts of CFC in the Atmosphere454

11.5.2 Calculating Amounts of Ozone Depletion from CFCs459

11.6 Solutions to the CFC Problem:The Montreal Protocol462

11.6.1 Ozone Depletion Potential464

11.6.2 Potential Environmental Trade-offs465

11.7 Conclusion466

11.8 References466

11.9 Problems467

Chapter 12 Global Warming and the Greenhouse Effect469

12.1 Introduction470

12.1.1 Greenhouse Gas Emissions and Atmospheric Change470

12.1.2 The Global Climate System472

12.1.3 Chapter Overview473

12.2 Fundamentals of the Greenhouse Effect474

12.2.1 The Nature of Radiative Energy474

12.2.2 Solar Energy Reaching Earth475

12.2.3 A Simple Earth Energy Balance476

12.2.4 Temperature and the Radiative Spectrum478

12.2.5 The Earth s Atmosphere480

12.2.6 Radiative Properties of the Atmosphere481

12.2.7 Greenhouse Effect Defined483

12.2.8 Earth Energy Balance Revisited483

12.2.9 Actual Radiative Balance485

12.3 Radiative Forcing of Climate Change486

12.3.1 Modes of Radiative Forcing487

12.3.2 Net Forcing from Atmospheric Changes488

12.3.3 Quantifying Radiative Forcing490

12.3.4 Radiative Forcing versus Concentration490

12.3.5 Radiative Forcing in the Industrial Age493

12.3.6 Equivalent CO2 Concentration497

12.4.1 Restoring the Earth’s Energy Balance498

12.4 Temperature Changes from Radiative Forcing498

12.4.2 Evaluating the Climate Sensitivity Factor499

12.4.3 Results from Observational Data499

12.4.4 Results from Climate Models501

12.4.5 Time Lags and Temperature Commitment503

12.5 Climate Change Predictions504

12.5.1 Temperature Change since Preindustrial Times505

12.5.2 Global Warmning in the 21st Century505

12.6 Historical Temperature Changes508

12.7 Stabilizing Atmospheric Concentrations510

12.7.1 Atmospheric Lifetime of Greenhouse Gases511

12.7.2 The Carbon Cycle513

12.7.3 Stabilization Scenarios516

12.8 CO2 Emissions and Energy Use518

12.8.1 Carbon Content of Fuels519

12.8.2 Energy Content of Fuels520

12.8.3 Carbon Intensity of Fuels521

12.8.4 Regional Sources of CO2 Emissions522

12.9 Reducing Greenhouse Gas Emissions524

12.9.1 Factors Affecting CO2 Emissions Growth524

12.9.2 Reducing Energy Intensity527

12.9.3 Reducing Carbon Intensity528

12.9.4 Reducing Non-CO2 Emissions532

12.9.5 Evaluating Emission Reduction Strategies533

12.10 Future Outlook536

12.10.1 The Kyoto Protocol536

12.11 Conclusion537

12.10.2 Beyond Kyoto537

12.12 References538

12.13 Problems539

PART 4 Topics in Environmental Policy Analysis543

Chapter 13 Economics and the Environment544

13.1 Introduction545

13.2 Fundamentals of Engineering Economics545

13.2.1 Categories of Cost545

13.2.2 Cash Flow Diagrams545

13.3 The Time Value of Money546

13.3.1 Present and Future Amounts547

13.3.2 Uniform Series Amounts549

13.3.3 Summary of Key Equations553

13.4 Evaluating Total Life Cycle Cost556

13.4.1 Net Present Value557

13.4.2 Levelized Annual Cost558

13.4.3 Cost per Unit of Product560

13.4.4 Average Cost-Effectiveness561

13.5 Comparing Technology Options562

13.5.1 Comparisons Based on Net Present Value562

13.5.2 Comparisons Based on Levelized Annual Cost564

13.5.3 Comparisons Based on Payback Period565

13.5.4 Comparisons Based on Average Cost-Effectiveness566

13.6 Marginal Cost Analysis567

13.6.1 Marginal Cost-Effectiveness569

13.6.2 Application to Market-Based Solutions570

13.7.1 Effect of Inflation571

13.7 Choosing an Interest Rate571

13.7.2 Constant versus Current Dollars572

13.7.3 Real versus Nominal Interest Rates574

13.7.4 The Analysis Perspective575

13.7.5 Taxes and Depreciation576

13.8 Cost-Benefit Analysis577

13.8.1 The Nature of Economic Benefits578

13.8.2 A General Cost Optimization Framework580

13.8.3 Limitations of Cost-Benefit Analysis582

13.9 Conclusion583

13.10 References583

13.11 Problems584

Chapter 14 Risk Assessment and Decision Analysis589

14.2 Defining Environmental Risks590

14.1 Introduction590

14.3 How Safe is Safe?593

14.4 Risk Assessment Methodology593

14.4.1 Hazard Assessment593

14.4.2 Dose-Response Assessment594

14.4.3 Exposure Assessment597

14.4.4 Risk Characterization599

14.5 Assessing Risk for Carcinogens599

14.5.1 Chronic Daily Intake600

14.5.2 Potency Factor600

14.5.3 Incremental Risk601

14.5.4 Levels of Acceptable Risk602

14.5.5 Application to Contaminated Sites603

14.6 Assessing Risk for Noncarcinogens604

14.6.1 Reference Dose605

14.6.2 Hazard Quotient607

14.7 Limitations of Risk Assessments608

14.7.1 Sources of Uncertainty609

14.7.2 Dealing with Uncertainty610

14.8 Approaches to Risk Management611

14.8.1 Defining Goals and Procedures612

14.8.2 Finding Workable Solutions613

14.9 Introduction to Decision Analysis615

14.10 Influence Diagrams616

14.10.1 Symbols and Conventions618

14.10.2 An Environmental Example619

14.10.3 Further Applications620

14.11 Decision Trees621

14.11.1 Building a Decision Tree621

14.11.2 Solving a Decision Tree624

14.11.3 Adding Complexity625

14.12 Conclusion628

14.13 References630

14.14 Problems630

Chapter 15 Environmental Forecasting634

15.1 Introduction635

15.2 Framing the Question635

15.2.1 Environmental Attributes of Concern636

15.2.2 Forecasts versus Scenarios636

15.3 Modeling the Future637

15.2.3 Time Period of Concern637

15.2.4 Spatial Scale of Concern637

15.3.1 Drivers of Environmental Change638

15.3.2 Modeling Environmental Processes638

15.4 Population Growth Models639

15.4.1 Annual Growth Rate Model640

15.4.2 Exponential Growth Model643

15.4.3 Logistic Growth Model644

15.4.4 Demographic Models647

15.5 Economic Growth Models654

15.5.1 Activity Coefficients656

15.5.2 Economic Growth and Energy Use657

15.5.3 Input-Output Models660

15.5.4 Macroeconomic Models663

15.6 Technological Change666

15.6.1 Types of Technology Change667

15.6.2 Scenarios of Alternative Technologies668

15.6.3 Rates of Technology Adoption669

15.6.4 Rates of Technology Innovation672

15.7 Conclusion677

15.8 References677

15.9 Problems678

Appendix681

Atomic Weight of Selected Elements681

Si Unit Prefixes682

Useful Conversion Factors682

热门推荐